Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Proteomics ; : e2300114, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38615323

RESUMO

Currently, nine polyglutamine (polyQ) expansion diseases are known. They include spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington's disease (HD). At the root of these neurodegenerative diseases are trinucleotide repeat mutations in coding regions of different genes, which lead to the production of proteins with elongated polyQ tracts. While the causative proteins differ in structure and molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases. PolyQ tracts mediate the association of proteins leading to the formation of protein complexes involved in gene expression regulation, RNA processing, membrane trafficking, and signal transduction. In this review, we discuss commonalities and differences among the nine polyQ proteins focusing on their structure and function as well as the pathological features of the respective diseases. We present insights from AlphaFold-predicted structural models and discuss the biological roles of polyQ-containing proteins. Lastly, we explore reported protein-protein interaction networks to highlight shared protein interactions and their potential relevance in disease development.

2.
Mol Syst Biol ; 20(4): 428-457, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467836

RESUMO

Protein-protein interactions (PPIs) offer great opportunities to expand the druggable proteome and therapeutically tackle various diseases, but remain challenging targets for drug discovery. Here, we provide a comprehensive pipeline that combines experimental and computational tools to identify and validate PPI targets and perform early-stage drug discovery. We have developed a machine learning approach that prioritizes interactions by analyzing quantitative data from binary PPI assays or AlphaFold-Multimer predictions. Using the quantitative assay LuTHy together with our machine learning algorithm, we identified high-confidence interactions among SARS-CoV-2 proteins for which we predicted three-dimensional structures using AlphaFold-Multimer. We employed VirtualFlow to target the contact interface of the NSP10-NSP16 SARS-CoV-2 methyltransferase complex by ultra-large virtual drug screening. Thereby, we identified a compound that binds to NSP10 and inhibits its interaction with NSP16, while also disrupting the methyltransferase activity of the complex, and SARS-CoV-2 replication. Overall, this pipeline will help to prioritize PPI targets to accelerate the discovery of early-stage drug candidates targeting protein complexes and pathways.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Metiltransferases/metabolismo , Inteligência Artificial , Descoberta de Drogas
3.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398436

RESUMO

Protein-protein interactions (PPIs) offer great opportunities to expand the druggable proteome and therapeutically tackle various diseases, but remain challenging targets for drug discovery. Here, we provide a comprehensive pipeline that combines experimental and computational tools to identify and validate PPI targets and perform early-stage drug discovery. We have developed a machine learning approach that prioritizes interactions by analyzing quantitative data from binary PPI assays and AlphaFold-Multimer predictions. Using the quantitative assay LuTHy together with our machine learning algorithm, we identified high-confidence interactions among SARS-CoV-2 proteins for which we predicted three-dimensional structures using AlphaFold Multimer. We employed VirtualFlow to target the contact interface of the NSP10-NSP16 SARS-CoV-2 methyltransferase complex by ultra-large virtual drug screening. Thereby, we identified a compound that binds to NSP10 and inhibits its interaction with NSP16, while also disrupting the methyltransferase activity of the complex, and SARS-CoV-2 replication. Overall, this pipeline will help to prioritize PPI targets to accelerate the discovery of early-stage drug candidates targeting protein complexes and pathways.

4.
Genome Med ; 15(1): 50, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37468900

RESUMO

BACKGROUND: Alzheimer's disease (AD) is characterized by the intra- and extracellular accumulation of amyloid-ß (Aß) peptides. How Aß aggregates perturb the proteome in brains of patients and AD transgenic mouse models, remains largely unclear. State-of-the-art mass spectrometry (MS) methods can comprehensively detect proteomic alterations, providing relevant insights unobtainable with transcriptomics investigations. Analyses of the relationship between progressive Aß aggregation and protein abundance changes in brains of 5xFAD transgenic mice have not been reported previously. METHODS: We quantified progressive Aß aggregation in hippocampus and cortex of 5xFAD mice and controls with immunohistochemistry and membrane filter assays. Protein changes in different mouse tissues were analyzed by MS-based proteomics using label-free quantification; resulting MS data were processed using an established pipeline. Results were contrasted with existing proteomic data sets from postmortem AD patient brains. Finally, abundance changes in the candidate marker Arl8b were validated in cerebrospinal fluid (CSF) from AD patients and controls using ELISAs. RESULTS: Experiments revealed faster accumulation of Aß42 peptides in hippocampus than in cortex of 5xFAD mice, with more protein abundance changes in hippocampus, indicating that Aß42 aggregate deposition is associated with brain region-specific proteome perturbations. Generating time-resolved data sets, we defined Aß aggregate-correlated and anticorrelated proteome changes, a fraction of which was conserved in postmortem AD patient brain tissue, suggesting that proteome changes in 5xFAD mice mimic disease-relevant changes in human AD. We detected a positive correlation between Aß42 aggregate deposition in the hippocampus of 5xFAD mice and the abundance of the lysosome-associated small GTPase Arl8b, which accumulated together with axonal lysosomal membranes in close proximity of extracellular Aß plaques in 5xFAD brains. Abnormal aggregation of Arl8b was observed in human AD brain tissue. Arl8b protein levels were significantly increased in CSF of AD patients. CONCLUSIONS: We report a comprehensive biochemical and proteomic investigation of hippocampal and cortical brain tissue derived from 5xFAD transgenic mice, providing a valuable resource to the neuroscientific community. We identified Arl8b, with significant abundance changes in 5xFAD and AD patient brains. Arl8b might enable the measurement of progressive lysosome accumulation in AD patients and have clinical utility as a candidate biomarker.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Proteoma/metabolismo , Proteômica , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Biomarcadores/metabolismo , Modelos Animais de Doenças
5.
Structure ; 31(9): 1121-1131.e6, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37390814

RESUMO

The huntingtin (HTT) protein plays critical roles in numerous cellular pathways by functioning as a scaffold for its many interaction partners and HTT knock out is embryonic lethal. Interrogation of HTT function is complicated by the large size of this protein so we studied a suite of structure-rationalized subdomains to investigate the structure-function relationships within the HTT-HAP40 complex. Protein samples derived from the subdomain constructs were validated using biophysical methods and cryo-electron microscopy, revealing they are natively folded and can complex with validated binding partner, HAP40. Derivatized versions of these constructs enable protein-protein interaction assays in vitro, with biotin tags, and in cells, with luciferase two-hybrid assay-based tags, which we use in proof-of-principle analyses to further interrogate the HTT-HAP40 interaction. These open-source biochemical tools enable studies of fundamental HTT biochemistry and biology, will aid the discovery of macromolecular or small-molecule binding partners and help map interaction sites across this large protein.


Assuntos
Proteína Huntingtina , Proteínas Nucleares , Microscopia Crioeletrônica , Proteína Huntingtina/química , Proteínas Nucleares/química , Humanos
6.
J Neurochem ; 166(2): 294-317, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37165774

RESUMO

The accumulation of amyloidogenic protein aggregates in neurons is a pathogenic hallmark of a large number of neurodegenerative diseases including Alzheimer's disease (AD). Small molecules targeting such structures and promoting their degradation may have therapeutic potential for the treatment of AD. Here, we searched for natural chemical compounds that decrease the abundance of stable, proteotoxic ß-sheet-rich amyloid-ß (Aß) aggregates in cells. We found that the polyphenol (-)-epigallocatechin gallate (EGCG) functions as a potent chemical aggregate degrader in SH-EP cells. We further demonstrate that a novel, fluorescently labeled EGCG derivative (EGC-dihydroxybenzoate (DHB)-Rhodamine) also shows cellular activity. It directly targets intracellular Aß42 aggregates and competes with EGCG for Aß42 aggregate binding in vitro. Mechanistic investigations indicated a lysosomal accumulation of Aß42 aggregates in SH-EP cells and showed that lysosomal cathepsin activity is critical for efficient EGCG-mediated aggregate clearance. In fact, EGCG treatment leads to an increased abundance of active cathepsin B isoforms and increased enzymatic activity in our SH-EP cell model. Our findings suggest that intracellular Aß42 aggregates are cleared through the endo-lysosomal system. We show that EGCG directly targets intracellular Aß42 aggregates and facilitates their lysosomal degradation. Small molecules, which bind to protein aggregates and increase their lysosomal degradation could have therapeutic potential for the treatment of amyloid diseases.


Assuntos
Doença de Alzheimer , Catequina , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Catequina/farmacologia , Catequina/química , Lisossomos/metabolismo
7.
Stem Cell Res ; 68: 103056, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863131

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal length of CAG repeats in the gene HTT, leading to an elongated poly-glutamine (poly-Q) sequence in huntingtin (HTT). We used non-integrative Sendai virus to reprogram fibroblasts from a patient with juvenile onset HD to induced pluripotent stem cells (iPSCs). Reprogrammed iPSCs expressed pluripotency-associated markers, exhibited a normal karyotype, and following directed differentiation generated cell types belonging to the three germ layers. PCR analysis and sequencing confirmed the HD patient-derived iPSC line had one normal HTT allele and one with elongated CAG repeats, equivalent to ≥180Q.


Assuntos
Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Peptídeos/metabolismo , Linhagem Celular , Proteína Huntingtina/genética
8.
Brain Commun ; 5(1): fcad010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756307

RESUMO

Huntingtin-lowering approaches that target huntingtin expression are a major focus for therapeutic intervention for Huntington's disease. When the cytosine, adenine and guanine repeat is expanded, the huntingtin pre-mRNA is alternatively processed to generate the full-length huntingtin and HTT1a transcripts. HTT1a encodes the aggregation-prone and highly pathogenic exon 1 huntingtin protein. In evaluating huntingtin-lowering approaches, understanding how the targeting strategy modulates levels of both transcripts and the huntingtin protein isoforms that they encode will be essential. Given the aggregation-propensity of exon 1 huntingtin, the impact of a given strategy on the levels and subcellular location of aggregated huntingtin will need to be determined. We have developed and applied sensitive molecular approaches to monitor the levels of aggregated and soluble huntingtin isoforms in tissue lysates. We have used these, in combination with immunohistochemistry, to map the appearance and accumulation of aggregated huntingtin throughout the CNS of zQ175 mice, a model of Huntington's disease frequently chosen for preclinical studies. Aggregation analyses were performed on tissues from zQ175 and wild-type mice at monthly intervals from 1 to 6 months of age. We developed three homogeneous time-resolved fluorescence assays to track the accumulation of aggregated huntingtin and showed that two of these were specific for the exon 1 huntingtin protein. Collectively, the homogeneous time-resolved fluorescence assays detected huntingtin aggregation in the 10 zQ175 CNS regions by 1-2 months of age. Immunohistochemistry with the polyclonal S830 anti-huntingtin antibody showed that nuclear huntingtin aggregation, in the form of a diffuse nuclear immunostain, could be visualized in the striatum, hippocampal CA1 region and layer IV of the somatosensory cortex by 2 months. That this diffuse nuclear immunostain represented aggregated huntingtin was confirmed by immunohistochemistry with a polyglutamine-specific antibody, which required formic acid antigen retrieval to expose its epitope. By 6 months of age, nuclear and cytoplasmic inclusions were widely distributed throughout the brain. Homogeneous time-resolved fluorescence analysis showed that the comparative levels of soluble exon 1 huntingtin between CNS regions correlated with those for huntingtin aggregation. We found that soluble exon 1 huntingtin levels decreased over the 6-month period, whilst those of soluble full-length mutant huntingtin remained unchanged, data that were confirmed for the cortex by immunoprecipitation and western blotting. These data support the hypothesis that exon 1 huntingtin initiates the aggregation process in knock-in mouse models and pave the way for a detailed analysis of huntingtin aggregation in response to huntingtin-lowering treatments.

9.
Stem Cell Res ; 65: 102976, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36434993

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by abnormal glutamine (Q) expansion in the huntingtin protein due to elongated CAG repeats in the gene HTT. We used non-integrative episomal plasmids to generate induced pluripotent stem cells (iPSCs) from three individuals affected by HD: CH1 (58Q), and two twin brothers CH3 (44Q) and CH4 (44Q). The iPSC lines exhibited one healthy HTT allele and one with elongated CAG repeats, as confirmed by PCR and sequencing. All iPSC lines expressed pluripotency markers, exhibited a normal karyotype, and generated cells of the three germ layers in vitro.


Assuntos
Proteína Huntingtina , Doença de Huntington , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Irmãos , Linhagem Celular , Proteína Huntingtina/genética , Alelos , Masculino
10.
Cell Syst ; 13(4): 304-320.e5, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35148841

RESUMO

Huntington disease (HD) is a monogenic neurodegenerative disorder with one causative gene, huntingtin (HTT). Yet, HD pathobiology is multifactorial, suggesting that cellular factors influence disease progression. Here, we define HTT protein-protein interactions (PPIs) perturbed by the mutant protein with expanded polyglutamine in the mouse striatum, a brain region with selective HD vulnerability. Using metabolically labeled tissues and immunoaffinity purification-mass spectrometry, we establish that polyglutamine-dependent modulation of HTT PPI abundances and relative stability starts at an early stage of pathogenesis in a Q140 HD mouse model. We identify direct and indirect PPIs that are also genetic disease modifiers using in-cell two-hybrid and behavioral assays in HD human cell and Drosophila models, respectively. Validated, disease-relevant mHTT-dependent interactions encompass mediators of synaptic neurotransmission (SNAREs and glutamate receptors) and lysosomal acidification (V-ATPase). Our study provides a resource for understanding mHTT-dependent dysfunction in cortico-striatal cellular networks, partly through impaired synaptic communication and endosomal-lysosomal system. A record of this paper's Transparent Peer Review process is included in the supplemental information.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Corpo Estriado , Modelos Animais de Doenças , Drosophila/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Camundongos , Doenças Neurodegenerativas/metabolismo
11.
J Mol Biol ; 433(24): 167305, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34655654

RESUMO

Numerous genetic methods facilitate the detection of binary protein-protein interactions (PPIs) by exogenous overexpression, which can lead to false results. Here, we describe CellFIE, a CRISPR- and cell fusion-based PPI detection method, which enables the mapping of interactions between endogenously tagged two-hybrid proteins. We demonstrate the specificity and reproducibility of CellFIE in a matrix mapping approach, validating the interactions of VCP with ASPL and UBXD1, and the self-interaction of TDP-43 under endogenous conditions. Furthermore, we show that CellFIE can be used to quantify changes of endogenous PPIs upon stress induction or drug treatment. For the first time, CellFIE facilitates systematic mapping of interactions between endogenously tagged proteins and represents a novel tool to characterize PPIs in live cells under dynamic conditions.


Assuntos
Fusão Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mapeamento de Interação de Proteínas/métodos , Humanos , Técnicas do Sistema de Duplo-Híbrido
13.
J Mol Biol ; 433(19): 167184, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34364876

RESUMO

Previously evidence was presented that the single-nucleotide polymorphism rs1344706 located in an intronic region of the ZNF804A gene is associated with reduced transcript levels in fetal brains. This genetic variation in the gene encoding the zinc-finger protein ZNF804A is associated with schizophrenia (SZ) and bipolar disorder. Currently, the molecular and cellular function of ZNF804A is unclear. Here, we generated a high-confidence protein-protein interaction (PPI) network for ZNF804A using a combination of yeast two-hybrid and bioluminescence-based PPI detection assays, directly linking 15 proteins to the disease-associated target protein. Among the top hits was the signal transducer and activator of transcription 2 (STAT2), an interferon-regulated transcription factor. Detailed mechanistic studies revealed that STAT2 binds to the unstructured N terminus of ZNF804A. This interaction is mediated by multiple short amino acid motifs in ZNF804A but not by the conserved C2H2 zinc-finger domain, which is also located at the N terminus. Interestingly, investigations in HEK293 cells demonstrated that ZNF804A and STAT2 both co-translocate from the cytoplasm into the nucleus upon interferon (IFN) treatment. Furthermore, a concentration-dependent effect of ZNF804A overproduction on STAT2-mediated gene expression was observed using a luciferase reporter, which is under the control of an IFN-stimulated response element (ISRE). Together these results indicate the formation of ZNF804A:STAT2 protein complex and its translocation from the cytoplasm into the nucleus upon IFN stimulation, suggesting that it may function as a signal transducer that activates IFN-mediated gene expression programs.


Assuntos
Interferon alfa-2/farmacologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fator de Transcrição STAT2/metabolismo , Esquizofrenia/genética , Motivos de Aminoácidos , Sítios de Ligação , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/genética , Polimorfismo de Nucleotídeo Único , Domínios Proteicos , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
14.
Front Neurosci ; 15: 682172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239412

RESUMO

The deposition of mutant huntingtin (mHTT) protein aggregates in neurons of patients is a pathological hallmark of Huntington's disease (HD). Previous investigations in cell-free and cell-based disease models showed mHTT exon-1 (mHTTex1) fragments with pathogenic polyglutamine (polyQ) tracts (>40 glutamines) to self-assemble into highly stable, ß-sheet-rich protein aggregates with a fibrillar morphology. HD knock-in mouse models have not been extensively studied with regard to mHTT aggregation. They endogenously produce full-length mHTT with a pathogenic polyQ tract as well as mHTTex1 fragments. Here, we demonstrate that seeding-competent, fibrillar mHTT aggregates can be readily detected in brains of zQ175 knock-in HD mice. To do this, we applied a highly sensitive FRET-based protein amplification assay that is capable of detecting seeding-competent mHTT aggregate species down to the femtomolar range. Furthermore, we show that fibrillar structures with an average length of ∼200 nm can be enriched with aggregate-specific mouse and human antibodies from zQ175 mouse brain extracts through immunoprecipitations, confirming that such structures are formed in vivo. Together these studies indicate that small, fibrillar, seeding-competent mHTT structures are prominent aggregate species in brains of zQ175 mice.

15.
Nat Commun ; 12(1): 1929, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33771987

RESUMO

Leigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/genética , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação , Neurônios/metabolismo , Organoides/metabolismo , Células Cultivadas , Pré-Escolar , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doença de Leigh/metabolismo , Masculino , Metabolômica/métodos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Morfogênese/genética , Neurônios/citologia , Proteômica/métodos , Análise de Célula Única/métodos , Sequenciamento do Exoma
16.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33771901

RESUMO

Elaboration of neuronal processes is an early step in neuronal development. Guidance cues must work closely with intracellular trafficking pathways to direct expanding axons and dendrites to their target neurons during the formation of neuronal networks. However, how such coordination is achieved remains incompletely understood. Here, we characterize an interaction between fasciculation and elongation protein zeta 1 (FEZ1), an adapter involved in synaptic protein transport, and collapsin response mediator protein (CRMP)1, a protein that functions in growth cone guidance, at neuronal growth cones. We show that similar to CRMP1 loss-of-function mutants, FEZ1 deficiency in rat hippocampal neurons causes growth cone collapse and impairs axonal development. Strikingly, FEZ1-deficient neurons also exhibited a reduction in dendritic complexity stronger than that observed in CRMP1-deficient neurons, suggesting that the former could partake in additional developmental signaling pathways. Supporting this, FEZ1 colocalizes with VAMP2 in developing hippocampal neurons and forms a separate complex with deleted in colorectal cancer (DCC) and Syntaxin-1 (Stx1), components of the Netrin-1 signaling pathway that are also involved in regulating axon and dendrite development. Significantly, developing axons and dendrites of FEZ1-deficient neurons fail to respond to Netrin-1 or Netrin-1 and Sema3A treatment, respectively. Taken together, these findings highlight the importance of FEZ1 as a common effector to integrate guidance signaling pathways with intracellular trafficking to mediate axo-dendrite development during neuronal network formation.


Assuntos
Axônios , Receptores de Superfície Celular , Proteínas Adaptadoras de Transdução de Sinal , Animais , Axônios/metabolismo , Receptor DCC , Cones de Crescimento/metabolismo , Proteínas do Tecido Nervoso , Neurônios/metabolismo , Ratos , Receptores de Superfície Celular/metabolismo
17.
Mol Psychiatry ; 26(9): 5441-5463, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32514103

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disorder resulting from a mutation in the huntingtin gene. This leads to the expression of the mutant huntingtin protein (mHTT) which provokes pathological changes in both the central nervous system (CNS) and periphery. Accumulating evidence suggests that mHTT can spread between cells of the CNS but here, we explored the possibility that mHTT could also propagate and cause pathology via the bloodstream. For this, we used a parabiosis approach to join the circulatory systems of wild-type (WT) and zQ175 mice. After surgery, we observed mHTT in the plasma and circulating blood cells of WT mice and post-mortem analyses revealed the presence of mHTT aggregates in several organs including the liver, kidney, muscle and brain. The presence of mHTT in the brain was accompanied by vascular abnormalities, such as a reduction of Collagen IV signal intensity and altered vessel diameter in the striatum, and changes in expression of Glutamic acid decarboxylase 65/67 (GAD65-67) in the cortex. Conversely, we measured reduced pathology in zQ175 mice by decreased mitochondrial impairments in peripheral organs, restored vessel diameter in the cortex and improved expression of Dopamine- and cAMP-regulated phosphoprotein 32 (DARPP32) in striatal neurons. Collectively, these results demonstrate that circulating mHTT can disseminate disease, but importantly, that healthy blood can dilute pathology. These findings have significant implications for the development of therapies in HD.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo
19.
Mol Metab ; 45: 101151, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359402

RESUMO

OBJECTIVE: Hormone secretion from metabolically active tissues, such as pancreatic islets, is governed by specific and highly regulated signaling pathways. Defects in insulin secretion are among the major causes of diabetes. The molecular mechanisms underlying regulated insulin secretion are, however, not yet completely understood. In this work, we studied the role of the GTPase ARFRP1 on insulin secretion from pancreatic ß-cells. METHODS: A ß-cell-specific Arfrp1 knockout mouse was phenotypically characterized. Pulldown experiments and mass spectrometry analysis were employed to screen for new ARFRP1-interacting proteins. Co-immunoprecipitation assays as well as super-resolution microscopy were applied for validation. RESULTS: The GTPase ARFRP1 interacts with the Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). Both proteins are co-localized at the trans-Golgi network and regulate the first and second phase of insulin secretion by controlling the plasma membrane localization of the SNARE protein SNAP25. Downregulation of both GOPC and ARFRP1 in Min6 cells interferes with the plasma membrane localization of SNAP25 and enhances its degradation, thereby impairing glucose-stimulated insulin release from ß-cells. In turn, overexpression of SNAP25 as well as GOPC restores insulin secretion in islets from ß-cell-specific Arfrp1 knockout mice. CONCLUSION: Our results identify a hitherto unrecognized pathway required for insulin secretion at the level of trans-Golgi sorting.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo de Golgi/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Feminino , Proteínas da Matriz do Complexo de Golgi/genética , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Knockout , Transporte Proteico , Proteínas SNARE/metabolismo , Rede trans-Golgi/metabolismo
20.
Front Neurol ; 11: 573560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329316

RESUMO

Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a trinucleotide repeat expansion in the Huntingtin gene. As disease-modifying therapies for HD are being developed, peripheral blood cells may be used to indicate disease progression and to monitor treatment response. In order to investigate whether gene expression changes can be found in the blood of individuals with HD that distinguish them from healthy controls, we performed transcriptome analysis by next-generation sequencing (RNA-seq). We detected a gene expression signature consistent with dysregulation of immune-related functions and inflammatory response in peripheral blood from HD cases vs. controls, including induction of the interferon response genes, IFITM3, IFI6 and IRF7. Our results suggest that it is possible to detect gene expression changes in blood samples from individuals with HD, which may reflect the immune pathology associated with the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA